On Biological Inspirations for Computer Science

Dr. Andrzej (AJ) Bieszczad
California State University Channel Islands
aj.bieszczad@csuci.edu

Outline

- Biological inspirations
- Human and machine problem solving
- An artificial cortical column
- Architecture of the Neurosolver
- Learning in the Neurosolver
- Running rats in mazes with the Neurosolver
- Rat's dilemma: multiple choices
- The context-based guided search
- Some conclusions
- TBDitF

December 10, 2007

Biological inspirations for computer science

- Evolution/Genetics \longrightarrow Genetic Algorithms

Biological inspirations for computer science

- Evolution/Genetics \longrightarrow Genetic Algorithms
- Ants behavior Swarm intelligence

Biological inspirations for computer science

- Evolution/Genetics
- Ants behavior
\longrightarrow Swarm intelligence
- Nervous system
\longrightarrow Neural Networks

Biological inspirations for computer science

- Evolution/Genetics
\longrightarrow Genetic Algorithms
- Ants behavior

Swarm intelligence

- Nervous system
\longrightarrow Neural Networks
- Neuron
\rightarrow Adaline

Biological inspirations for computer science

- Evolution/Genetics
\longrightarrow Genetic Algorithms
- Ants behavior
\rightarrow Swarm intelligence
\longrightarrow Neural Networks
- Neuron
\rightarrow Adaline
- Immune system

Biological inspirations for computer science

- Evolution/Genetics
- Ants behavior
\rightarrow Swarm intelligence
\longrightarrow Neural Networks
- Neuron
\rightarrow Adaline
- Immune system
\longrightarrow Self-healing networks
- Network of hypercolumns

\rightarrow Neurosolver

December 10, 2007

Human problem solving

December 10, 2007

Modeling the real world

December 10, 2007

Solving a puzzle problem

current	desired
configuration	configuration

Solving a puzzle problem

		B
R		G

A search tree for a block rearrangement problem

A search tree for a block rearrangement problem

A search tree for a block rearrangement problem

A search tree for a block rearrangement problem

A search tree for a block rearrangement problem

A search tree for a block rearrangement problem

A solution path to a problem of rearranging blocks

December 10, 2007

How to construct the map?

- In the human brain

How to construct the map?

- In the human brain

- In an artificial network
\square backpropagation
\square Kohonen
\square Hopfield
\square other classification techniques

December 10, 2007

What is a node?

■ Simple units used in most neural networks are not adequate
\square need extended functionality

What is a node?

- Simple units used in most neural networks are not adequate
\square need extended functionality
■ Hyper-column suggested to posses needed features
\square Y Cajal (Noble Price, 1906), Szentágothai, Hubel/Wiesel (Noble Price, 1981)
\square Burnod (brain modeling)
\square See BlueBrain Project:
- http://bluebrainproject.epfl.ch/
- first phase finished on Nov. 26th, 2007!

December 10, 2007

Cortical hyper-column

A forest of neurons. A dye is injected into each neuron and then developed inorder to reveal the morhology. This image shows a minute fraction of the cells and connections within the microcircuitry of the Neocortex

The activity in the Neocortex is tightly control by inhibitory neurons. Shown here are the inhibitory fiberse in The activity in the Neocortex is tightly contron by inhibitory neurons Shown here are the infibitory fiberse in
blue that wrap around the pyramidal neutons, in red,

Cortical Hypercolumn

Architecture of Neurosolver

Adaptation in the Neurosolver

If \mathbf{N}_{2} fires after \mathbf{N}_{1} fired, then the connection from the upper division of \mathbf{N}_{2} and to the upper division of N_{1} is strengthen. At the same time, the connection from the lower division of \mathbf{N}_{1} to the lower division of \mathbf{N}_{2} is strengthen as well.

Adaptation in the Neurosolver

If \mathbf{N}_{2} fires after \mathbf{N}_{1} fired, then the connection from the upper division of \mathbf{N}_{2} and to the upper division of N_{1} is strengthen. At the same time, the connection from the lower division of N_{1} to the lower division of \mathbf{N}_{2} is strengthen as well.

Two learned chains: backward search and

Two learned chains: backward search and

direction of learning sequence

Two learned chains: backward search and

direction of learning sequence

backward search chain
forward execution chain

Two learned chains: backward search and

Two learned chains: backward search and

Two learned chains: backward search and

Two learned chains: backward search and

direction of learning sequence

backward search chain
forward execution chain

Search along the backward chain

top view

The top view shows a search tree with many branches; the cross-section is just for one of the branches (color intensity indicates search level of activity)

Search along the backward chain

top view

The top view shows a search tree with many branches; the cross-section is just for one of the branches (color intensity indicates search level of activity)

Search along the backward chain

The top view shows a search tree with many branches; the cross-section is just for one of the branches (color intensity indicates search level of activity)

$$
\text { action potential }=\text { activity } * P
$$

top view

Triggering the solution

(dark navy color indicates a firing level of activity).

top view

Note, that the node that has fired is shut down; i.e., it is not active anymore.

Stepping through the solution path

top view

Note, that the node that has fired is shut down; i.e., it is not active anymore.
\square

top view

Final step in the solution path

top view

Final step in the solution path

top view

Final step in the solution path

Goal attained - activity ceases

When the node corresponding to the goal fires, it is shut down as well. In that way, the source of the search activity disapears: an indication that the goal has been achieved.

Maze simulator

December 10, 2007

Experiments: simple T-maze

If food is placed consistently in one arm of the T , then this is the arm that will be selected by the rats in the subsequent runs. If the rat obtained food from both arms then it will choose the one that has a better trace in memory (higher probability).

Live rats may exhibit aberrant behavior under stress.

Experiments: multiple paths

The rat selects the shortest path if the uniform learning is selected. If probabilistic learning is chosen, then the most probable path is taken: the path most often followed and rewarded in the past. This behavior comes from the fundamental characteristics of the Neurosolver. If a wall is created along the shortest path, then the rat reconsiders the plan and selects an alternate path backtracking as necessary.

Experiments: star-shaped T-maze

The simulated rat trying to get all food navigates to food along the minimal path.

If food is removed from certain locations, then the rat will tend to move to the branches that provided consistent food-reward.

December 10, 2007

Experiments: complex T-maze

The rat is faced with multiple choices (T 's) on their path to the food. This is a more challenging task to live rats. It also takes a longer training session for the artificial rat to build a map, and higher motivation to find a path to the food.

Live rats often fail to learn complex mazes

The rat's dilemma: Multiple choices

?

Problems with multiple choices

run 1

Problems with multiple choices

run 1

run 2

December 10, 2007

What's happening in the rat's brain?

What's happening in the rat's brain?

What's happening in the rat's brain?

Adding context

December 10, 2007

Learning with context

\square run 1

Learning with context

run 1

The context mechanism in the Neurosolver

The context mechanism in the Neurosolver

Context-modulated search

Context-modulated search

Running with the contextual activity

Running with the contextual activity

Rat maze simulator with context

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable
- rats may get frustrated - not the Neurosolver

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable
- rats may get frustrated - not the Neurosolver
\square the Neurosolver always selects the best solution and performs

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable
- rats may get frustrated - not the Neurosolver
\square the Neurosolver always selects the best solution and performs
- uses the contextual cues if available

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable
- rats may get frustrated - not the Neurosolver
\square the Neurosolver always selects the best solution and performs
- uses the contextual cues if available
- there is also a random selection mechanism built in to deal with race conditions

Conclusions

- In spite of dramatic simplifications in the model, similar behavior of the artificial rat to live rats running in mazes without stress
\square under stress, animal behavior becomes unpredictable
- rats may get frustrated - not the Neurosolver
\square the Neurosolver always selects the best solution and performs
- uses the contextual cues if available
- there is also a random selection mechanism built in to deal with race conditions
- Neurosolver models the mechanism for path storage and recovery, but does not capture many other nuances that control the behavior of live rats.

TBDitF

- State space reduction
- Exploring application of functional areas
\square e.g., separate storage for place cells
- place cells observed in hippocampus, but in the Neurosolver all is in one network mixed with hypercolumns
- Exploring new data from neuroscience
\square e.g., evident plasticity (programmability) in the hippocampus brings an idea of neuromorphic subroutines
- the hippocampus produces maps (composed of place cells), but does not seem to store them
- Taxon navigation
\square real-time processing
- Continuous learning
- Goal management
- Alternative implementations
\square Software and hardware
- 3D model for the rat maze

On Biological Inspirations for Computer Science

Dr. Andrzej (AJ) Bieszczad

California State University Channel Islands
aj.bieszczad@csuci.edu

EXTRAS

On Biological Inspirations for Computer Science

EXTRAS

Dr. Andrzej (AJ) Bieszczad

California State University Channel Islands
aj.bieszczad@csuci.edu

Probabilistic learning

$\mathrm{T}_{\text {out }}$ - number of transmissions of an action potential

$\mathrm{S}_{\text {out }}$ - total number of cases when a division positively influenced other nodes
$\mathrm{T}_{\text {in }}$ - the number of times when an action potential transmitted over the connection contributed to the firing of the target node $S_{i n}$ - the total number of times when any node positively influenced the node.

$$
P=P_{\text {out }} \cdot P_{\text {in }}=\left(T_{\text {out }} / S_{\text {out }}\right) \cdot\left(T_{\text {in }} /\right.
$$

Probabilistic connection strength

S - total number of columnar firings

T-number of contextual co-activations

$P=T / S$

